Part Number Hot Search : 
2N440 M1Z10 C1608C0G CA3082M IRFNJ540 XMEGAA1 B2912BT1 GPC130A
Product Description
Full Text Search
 

To Download ZL60101 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ZL60101/2 12 x 2.7 Gbps Parallel Fiber Optic Link Transmitter and Receiver
Data Sheet
June 2004
Ordering Information ZL60101/MJD Parallel Fiber Transmitter ZL60102/MJD Parallel Fiber Receiver Heat sink and EMI shield options are available upon request 0C to +80C
Features
* * * * * * * * * * * * 12 parallel channels, total 32.6 Gbps capacity Data rate up to 2.72 Gbps per channel 850 nm VCSEL array Data I/O is CML compatible with DC blocking capacitors Link reach 300 m with 50/125 m 500 MHz.km fiber at 2.5 Gbps Channel BER better than 10-12 Industry standard MPO/MTP ribbon fiber connector interface Pluggable MegArray(R) ball grid array connector Optionally available with EMI shield and external heat sink Laser class 1M IEC 60825-1:2001 compliant Power supply 3.3 V Compatible with industry MSA
Description
The ZL60101 and ZL60102 together make a very high speed transmitter/receiver pair for parallel fiber applications. The ZL60101 transmitter module converts parallel electrical input signals via a laser driver and a VCSEL array into parallel optical output signals at a wavelength of 850 nm. The ZL60102 receiver module converts parallel optical input signals via a PIN photodiode array and a transimpedance and limiting amplifier into electrical output signals. The modules are pluggable each fitted with an industrystandard MegArray(R) BGA connector. This provides ease of assembly on the host board and enables provisioning of bandwidth on demand.
Applications
* * * * * High-speed interconnects within and between switches, routers and transport equipment Proprietary backplanes Low cost SONET/SDH VSR (Very Short Reach) OC-192/STM64 connections InfiniBand(R) connections Interconnects rack-to-rack, shelf-to-shelf, boardto-board, board-to-optical backplane
1
Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2003-4, Zarlink Semiconductor Inc. All Rights Reserved.
ZL60101/2 Table of Contents
Data Sheet
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ZL60101 Transmitter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Transmitter Control and Status Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Transmitter Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Transmitter Pinout Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Transmitter Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ZL60102 Receiver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Receiver Control and Status Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Receiver Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Receiver Pinout Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Receiver Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Regulatory Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Eye Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrostatic Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrostatic Discharge Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electromagnetic Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Handling instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Cleaning the Optical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 ESD Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Link Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Link Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Interface - Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2
Zarlink Semiconductor Inc.
ZL60101/2
Absolute Maximum Ratings
Data Sheet
Not necessarily applied together. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Parameter Supply voltage Differential input voltage amplitude Voltage on any pin Relative humidity (non-condensing) Storage temperature ESD resistance
1. Differential input voltage amplitude is defined as V = DIN+ - DIN-. 1
Symbol VCC V VPIN MOS TSTG VESD
Min. -0.3
Max. 4.0 1.2
Unit V V V % C kV
-0.3 5 -40
VCC + 0.3 95 100 1
Recommended Operating Conditions
These parameters apply both to the transmitter and the receiver. Parameter Power supply voltage Operating case temperature Signaling rate (per channel)1 Link distance2 Data I/O DC blocking capacitors Power supply noise4
3
Symbol VCC TCASE fD LD CBLK VNPS
Min. 3.135 0 1.0 2 100
Max. 3.465 80 2.72
Unit V C Gbps m nF
200
mVp-p
1. Data patterns are to have maximum run lengths and DC balance shifts no worse than that of a Pseudo Random Bit Sequence of length 223-1 (PRBS-23). Information on lower bit rates is available on request. 2. For maximum distance, see Table 6. 3. For AC-coupling, DC blocking capacitors external to the module with a minimum value of 100 nF is recommended. 4. Power supply noise is defined at the supply side of the recommended filter for all VCC supplies over the frequency range of 500 Hz to 2720 MHz with the recommended power supply filter in place.
L1 1 H
L2 6.8 nH
R1 100 Host Vcc C1 10 F C2 10 F C3 0.1 F
R2 1.0 k Module Vcc C4 0.1 F
Figure 1 - Recommended Power Supply Filter
3
Zarlink Semiconductor Inc.
ZL60101/2
ZL60101 Transmitter Specifications
Data Sheet
All parameters below require operating conditions according to "Recommended Operating Conditions" on page 3. Parameter Optical Parameters Launch power (50/125 m MMF)1 Extinguished output power Extinction ratio
2
Symbol
Min.
Max.
Unit
POUT POFF ER OMA C RIN12OMA tRO tFO
5
-7.5
-2 -30
dBm dBm dB mW
7 0.24 830 860 0.85 -116 150 150 120 50 100
Optical modulation amplitude3 Center wavelength Spectral width
4
nm nmrms dB/Hz ps ps ps ps ps
Relative intensity noise OMA Optical output rise time (20 - 80%) Optical output fall time (20 - 80%) Total jitter contributed (peak to peak) Channel to channel skew6 Electrical Parameters Power dissipation Supply current Differential input voltage amplitude (peak to peak) Differential input impedance8 Electrical input rise time (20 - 80%) Electrical input fall time (20 - 80%)
7
TJ DJ tSK PD ICC VIN ZIN tRE tFE 200 80
Deterministic jitter contributed (peak to peak)
1.5 450 800 120 160 160
W mA mVp-p ps ps
1. The output optical power is compliant with IEC 60825-1 Amendment 2, Class 1M Accessible Emission Limits. 2. The extinction ratio is measured at 622 Mbps. 3. Informative. Corresponds to POUT = -7.5 dBm and ER = 7 dB. 4. Spectral width is measured as defined in EIA/TIA-455-127 Spectral Characterization of Multimode Laser Diodes. 5. Total jitter equals TP1 to TP2 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet). 6. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the transmitter inputs. 7. Differential input voltage is defined as the peak to peak value of the differential voltage between DIN+ and DIN-. Data inputs are CML compatible. 8. Differential input impedance is measured between DIN+ and DIN-.
4
Zarlink Semiconductor Inc.
ZL60101/2
Data Sheet
Classified in accordance with IEC 60825-1/A2:2001, IEC 60825-2 : 2000 Class 1M Laser Product Emited wavelength: 840 nm
DIN0+ DIN0-
VCSEL Driver
DIN11+ DIN11-
VCSEL Array
0 1 2 3 4 5 6 7 8 9 10 11
VCSEL Driver Controller
VCC
VEE
RESET Tx_DIS Tx_EN
FAULT
Figure 2 - ZL60101 Transmitter Block Diagram
Front view - MTP key up Ch 11 Ch 10 Ch 9 Ch 8 Ch 7 Ch 6 Ch 5 Ch 4 Ch 3 Ch 2 Ch 1 Ch 0
Host circuit board Table 1 - Transmitter Optical Channel Assignment
5
Zarlink Semiconductor Inc.
ZL60101/2
Data Sheet
DIN+ 50 50 DIN-
VCC 13k 11k VEE
Figure 3 - Differential CML Input Equivalent Circuit Transmitter Control and Status Signals The following table shows the timing relationships of the status and control signals of the pluggable optical transmitter. Parameter Control input voltage high1 Control input voltage low Control pull-up resistor
2 3
Symbol VIH VIL RPU RPD1 VOL RPD2 TFA TFD TTDD TOFF TON TTEN TTD TTD TTEN
Min. 2.1
Typ.
Max.
Unit V
0.62 10 10 0.4 10 100 100 10 5 10 100 1 5 5 10 10 1
V k k V k s s s s ms ms s s ms
Control pull-down resistor
4
Status output voltage low4, 5 Status pull-down resistor FAULT assert time FAULT lasers off RESET duration RESET assert time RESET de-assert time Tx_EN assert time Tx_EN de-assert time Tx_DIS assert time Tx_DIS de-assert time
1. Applies to control signals RESET, Tx_DIS and Tx_EN. 2. Applies to control signals RESET and Tx_EN. Internal pull-up resistor. 3. Applies to control signal Tx_DIS. Internal pull-down resistor. 4. Applies to status signal FAULT. Internal pull-down to VEE. 5. With status output sink current max. 2 mA.
6
Zarlink Semiconductor Inc.
ZL60101/2
Transmitter Control and Status Timing Diagrams
Data Sheet
The following figures show the timing relationships of the status and control signals of the pluggable optical transmitter.
Vcc TTEN
Tx Output [0:11] Data [0:11]
Transmitter Not Ready
Normal operation
RESET: floating or high
Figure 4 - Transmitter Power-up Sequence
FAULT
TFA
TFD
Data [0:11] Tx Output [0:11]
No Fault
Fault
Figure 5 - Transmitter Fault Signal Timing Diagram
7
Zarlink Semiconductor Inc.
ZL60101/2
Data Sheet
RESET
FAULT
TTDD
TON
Data [0:11] Tx Output [0:11]
Transmitter Not Ready
Normal operation
Figure 6 - Transmitter Reset Signal Timing Diagram
Tx_EN TTD Data [0:11] Lasers off
Tx_DIS TTD Data [0:11] Lasers off
Normal operation
Tx Off
Normal operation
Tx Off
Tx_EN TTEN
Data [0:11]
Transmitter Not Ready
Normal operation
Figure 7 - Transmitter Enable and Disable Timing Diagram
Tx_DIS High Tx_EN High Tx_EN Low Transmitter disabled Transmitter disabled
Tx_DIS Low Normal operation Transmitter disabled
Table 2 - Truth Table for Transmitter Operation (Pre-condition: RESET floating or HIGH)
8
Zarlink Semiconductor Inc.
ZL60101/2
Transmitter Pinout Assignments K 1 2 3 4 5 6 7 8 9 10
NIC NIC NIC NIC NIC NIC NIC DNC DNC DNC
Data Sheet
J
NIC NIC VCC VCC VCC VCC NIC RESET Tx_EN DNC
H
NIC NIC VCC VCC VCC VCC NIC FAULT Tx_DIS DNC
G
VEE VEE VEE DIN3+ DIN3VEE DIN0+ DIN0VEE DNC
F
VEE VEE DIN4+ DIN4VEE DIN1+ DIN1VEE VEE DNC
E
VEE DIN5+ DIN5VEE DIN2+ DIN2VEE VEE VEE DNC
D
VEE VEE VEE DIN6+ DIN6VEE DIN11DIN11+ VEE DNC
C
VEE VEE DIN7+ DIN7VEE DIN10DIN10+ VEE VEE DNC
B
VEE DIN8+ DIN8VEE DIN9DIN9+ VEE VEE VEE DNC
A
NIC VEE VEE NIC VEE VEE NIC NIC NIC DNC
Table 3 - Transmitter Host Circuit Board Layout (Top view, toward MPO/MTP connector end) (10x10 array, 1.27 mm pitch) Transmitter Pin Description Signal Name DIN[0:11] +/VCC VEE Type Data input Description Transmitter data in, channel 0 to 11 Transmitter power supply rail Transmitter signal common. All transmitter voltages are referenced to this potential unless otherwise stated. Control input Control input Status output Transmitter enable. HIGH: normal operation LOW: disable transmitter Transmitter disable. HIGH: disable transmitter LOW: normal operation Transmitter fault. HIGH: normal operation LOW: laser fault detected on at least one channel Transmitter reset. HIGH: normal operation LOW:reset to clear fault signal Do not connect to any potential, including ground. No internal connection. Directly connect these pads to the PC board transmitter signal ground plane. Comments Internal differential termination at 100 .
Tx_EN
Active high, internal pull-up. See Table 2. Active high, internal pull-down. See Table 2. When active, all channels are disabled. Clear by reset signal. Internal pull-up.
Tx_DIS
FAULT
RESET
Control input
Internal pull-up.
DNC NIC
9
Zarlink Semiconductor Inc.
ZL60101/2
ZL60102 Receiver Specifications
Data Sheet
All parameters below require operating conditions according to Table 2 and a termination load of 100 differential at the electrical output. Parameter Optical Parameters Input optical power Center wavelength Return loss
2 3 1
Symbol
Min.
Max.
Unit
PIN C RL TJ DJ PSS tSK PSA PSD PD ICC
6
-16 830 12
-2 860
dBm nm dB
Total jitter contributed (peak to peak)
4
120 50 -11.3 100 -17 -27
ps ps dBm ps dBm dBm
Deterministic jitter contributed (peak to peak) Stressed receiver sensitivity Channel to channel skew5 Signal detect assert Signal detect de-assert Electrical Parameters Power dissipation Supply current Differential output voltage amplitude (peak to peak) Output differential load impedance7 Stressed receiver eye opening8 Electrical output rise time (20 - 80 %) Electrical output fall time (20 - 80 %)
-12
1.5 450 500 80 0.3 150 150 800 120
W mA mVp-p UI ps ps
VOUT ZL PSE tRE tFE
1. Receive power for a channel is measured for a BER of 10 and worst case extinction ratio. PIN (Min) is measured using a fast rise/fall time source with low RIN and adjacent channel(s) operating with incident power of 6 dB above PIN (Min). 2. Return loss is measured as defined in TIA/EIA-455-107A Determination of Component Reflectance or Link/System Return Loss Using a Loss Test Set. 3. Total jitter equals TP3 to TP4 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet). 4. The stressed receiver sensitivity is measured using PRBS 223-1 pattern, 2.7 dB inter-symbol interference, ISI (Min), 30 ps duty cycle dependent deterministic jitter, DCD DJ (Min), and 7 dB extinction ratio, ER (Min) (ER penalty = 1.76 dB). All channels not under test are receiving signals with an average input power of 6 dB above PIN (Min). 5. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the receiver inputs. 6. Differential output voltage is defined as the peak to peak value of the differential voltage between DOUT+ and DOUT- and measured with a 100 differential load connected between DOUT+ and DOUT-. Data outputs are CML compatible. 7. See Figure 14. 8. The stressed receiver eye opening represents the eye at TP4 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet). The stressed receiver eye opening is measured using PRBS 223-1 pattern, 2.7 dB ISI min, 30 ps DCD DJ min, 7 dB ER min and an average input power of -10.8 dBm (0.5 dB above minimum stressed receiver sensitivity as defined in IEEE 802.3 clause 38.6). All channels not under test are receiving signals with an average input power of 6 dB above PIN (Min).
10
Zarlink Semiconductor Inc.
ZL60101/2
Data Sheet
0 1 2 3 4 5 6 7 8 9 10 11
PIN Array
TransImpedance and Limiting Amplifier
DOUT0+ DOUT0-
DOUT11+ DOUT11-
VCC VEE
Rx_EN Rx_SD SQ_EN
Figure 8 - ZL60102 Receiver Block Diagram
Front view - MTP key up Ch 11 Ch 10 Ch 9 Ch 8 Ch 7 Ch 6 Ch 5 Ch 4 Ch 3 Ch 2 Ch 1 Ch 0
Host circuit board Table 4 - Receiver Optical Channel Assignment Receiver Control and Status Signals The following table shows the timing relationships of the status and control signals of the pluggable optical receiver. Parameter Control input voltage high1 Control input voltage low
1 1
Symbol VIH VIL IIN VOL RPU TSD TLOS TRXEN TRXD
Min. 2.0
Typ.
Max.
Unit V
0.9 10 100 0.4 3.25 50 50 33 5 200 200
V A V k s s ms s
Control input pull-up current
Status output voltage low2, 3 Status output pull-up resistor
2
Receiver signal detect assert time Receiver signal detect de-assert time Receiver enable assert time Receiver enable de-assert time
1. Applies to control signals Rx_EN, SQ_EN. 2. Applies to status signal Rx_SD. Internal pull-up to VCC. 3. With status output sink current max 2 mA.
11
Zarlink Semiconductor Inc.
ZL60101/2
Receiver Control and Status Timing Diagrams
Data Sheet
The following figures show the timing relationships of the status and control signals of the pluggable optical receiver.
Rx_EN TRXD
ICC
Normal Operation
Rx Off
Figure 9 - Receiver Enable Signal Timing Diagram
Rx_SD TLOS Signal No Signal
Figure 10 - Receiver Signal Detect Timing Diagram
12
Zarlink Semiconductor Inc.
ZL60101/2
Receiver Pinout Assignments K 1 2 3 4 5 6 7 8 9 10
DNC DNC NIC NIC NIC NIC NIC DNC DNC SQ_EN
Data Sheet
J
NIC NIC VCC VCC VCC VCC NIC NIC Rx_EN DNC
H
NIC NIC VCC VCC VCC VCC Rx_SD NIC NIC DNC
G
VEE VEE VEE DOUT3DOUT3+ VEE DOUT0DOUT0+ VEE DNC
F
VEE VEE DOUT4DOUT4+ VEE DOUT1DOUT1+ VEE VEE DNC
E
VEE DOUT5DOUT5+ VEE DOUT2DOUT2+ VEE VEE VEE DNC
D
VEE VEE VEE DOUT6DOUT6+ VEE DOUT11+ DOUT11VEE DNC
C
VEE VEE DOUT7DOUT7+ VEE DOUT10+ DOUT10VEE VEE DNC
B
VEE DOUT8DOUT8+ VEE DOUT9+ DOUT9VEE VEE VEE DNC
A
NIC VEE VEE NIC VEE VEE NIC NIC NIC DNC
Table 5 - Receiver Pinout Assignments (Top view, toward MPO/MTP connector end) (10x10 array, 1.27 mm pitch) Receiver Pin Description Signal Name DOUT[0:11] +/VCC VEE Type Data output Description Receiver data out, channel 0 to 11. Receiver power supply rail. Receiver signal common. All receiver voltages are referenced to this potential unless otherwise stated. Control input Status output Control input Receiver enable. HIGH: normal operation LOW: disable receiver Receiver signal detect. HIGH: valid optical input on all channels LOW: loss of signal on at least one channel Squelch enable. HIGH: squelch function enabled. Data OUT is squelched on any channels that have loss of signal LOW: squelch function disabled Do not connect to any potential, including ground. No internal connection. Directly connect these pads to the PC board transmitter signal ground plane. Internal pull-up. Comments
Rx_EN
Rx_SD
Internal pull-up.
SQ_EN
Internal pull-up.
DNC NIC
13
Zarlink Semiconductor Inc.
ZL60101/2
Thermal Characteristics
There are three options for heat sinks depending on the cooling needs. They are: 1. Direct application without any attached external heat sink 2. Use a generic heat sink specified by Zarlink 3. Use a customer designed external heat sink
Data Sheet
In Figure 11 and Figure 12, the temperature rise and thermal resistance as a function of air velocity (free air velocity at the top of the module) is shown for option 1 and 2. The thermal resistance is defined as the temperature difference between the case temperature and ambient flowing air divided by the total heat dissipation of the module. Improved thermal properties can be achieved by using a larger heat sink especially if more height is available (option 3). For this option, a more detailed discussion with Zarlink is recommended regarding heat sink design attachment materials.
Tem perature rise at 1.5W (Free stream air velocity)
Temperature rise (K)
20 16 12 8 4 0 0 1 2 3 4 Air velocity (m/s)
Option ZL6010*/ML Option ZL6010*/MJ
Figure 11 - Temperature Difference Between Ambient Flowing Air and Case at a Heat Dissipation of 1.5 W
Therm al resistance to air (Free stream air velocity)
Thermal resistance (K/W)
15 10
Option ZL6010*/ML
5 0 0 1 2 3 4 Air velocity (m/s)
Option ZL6010*/MJ
Figure 12 - Thermal Resistance, as a Function of Air Velocity (the airflow is along the shortest side of the module) For any other orientation, the thermal resistance is 75-100% of the values shown above.
14
Zarlink Semiconductor Inc.
ZL60101/2
Regulatory Compliance
Eye Safety
Data Sheet
The maximum optical output power is specified to comply with Class 1M in accordance with IEC 60825-1:2001. In addition the transmitter complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No.50, dated July 26, 2001. No maintenance or service of the product may be performed. Electrostatic Discharge The module is classified as Class 1 (> 1000 Volts) according to MIL-STD-883, test method 3015.7, with regards to the electrical pads. Electrostatic Discharge Immunity The part withstand a 15 kV (air discharge) and 8 kV (contact discharge) either indirect or directly to receptacle; tested according to IEC 61000-4-2, while in operation without addition of bit errors. Electromagnetic Interference Emission The electromagnetic emission is tested in front of the module (module fitted with EMI shield), with the module mounted in a frontplate cutout. The part is tested with FCC Part 15, 30 - 1000 MHz and 1 GHz to 5th harmonic of the highest fundamental frequency (6.75 GHz), and is specified to be Class B with > 6 dB margin. Immunity The electromagnetic immunity is tested without a front panel or enclosure. The module specification is maintained with an applied field of 10 V/m for frequencies between 10 kHz and 10 GHz, according to IEC 61000-4-3 and GR-1089-CORE.
Handling instructions
Cleaning the Optical Interface A protective connector plug is supplied with each module. This plug should remain in place whenever a fiber cable is not inserted. This will keep the optical port free from dust or other contaminants, which may potentially degrade the optical signal. Before reattaching the connector plug to the module, visually inspect the plug and remove any contamination. If the module's optical port becomes contaminated, it can be cleaned with high-pressure nitrogen (the use of fluids, or physical contact, is not advised due to potential for damage). Before a fiber cable connector is attached to the module, it is recommended to clean the fiber cable connector using an optical connector cleaner, or according to the cable manufacturer's instructions. It is also recommended to clean the optical port of the module with high-pressure nitrogen. Connectors For optimum performance, it is recommended that the number of insertions is limited to 50 for the electrical MegArray connector and 200 for the optical MPO/MTP connector. ESD Handling When handling the modules, precautions for ESD sensitive devices should be taken. These include use of ESD protected work areas with wrist straps, controlled work-benches, floors etc.
15
Zarlink Semiconductor Inc.
ZL60101/2
Link Reach
Data Sheet
The following table lists the minimum reach distance of the 12 channel pluggable optical modules for different multimode fiber (MMF) types and bandwidths assuming worst case parameters. Each case allows for a maximum of 2 dB per channel connection loss for patch cables and other connectors. Fiber Type [core / cladding m] 62.5/125 MMF 62.5/125 or 50/125 MMF 50/125 MMF Modal Bandwidth @ 850 nm [MHz*km] 200 400 500 Reach Distance @ 1 Gbps [m] 350 650 750 Reach Distance @ 2.5 Gbps [m] 130 260 300 Reach Distance @ 2.72 Gbps [m] 110 220 270
Table 6 - Link Reach for Different Fiber Types and Data Rates Link Model Parameters The link reaches above have been calculated using the following link model parameters and Gigabit Ethernet link model version 2.3.5 (filename: 5pmd047.xls). Parameter Mode partition noise k-factor Modal noise Dispersion slope parameter Wavelength of zero dispersion Attenuation coefficient at 850 nm Conversion factor Q-factor [BER 10-12] TP4 eye opening DCD allocation at TP3 RMS baseline wander S.D. RIN coefficient Conversion factor DCD DJ BLW kRIN c_rx Symbol k MN SO UO dB C1 Q Value 0.3 0.3 0.11 1320 3.5 480 7.04 0.3 0.08 0.025 0.70 329 ns.MHz UI UI dB ps/nm2*km nm dB/km ns.MHz Unit
16
Zarlink Semiconductor Inc.
ZL60101/2
Electrical Interface - Application Examples
Recommended CML output Transmitter CML input
Data Sheet
Host PCB
100nF ZOUT=100 Differential Z0=100 Differential 100nF ZIN=100 Differential
Figure 13 - Recommended Differential CML Input Interface
Receiver CML output
Recommended CML input
Host PCB
100nF Z0=100 Differential 100nF ZL ZTERM =100 Differential
Figure 14 - Recommended Differential CML Output Interface
17
Zarlink Semiconductor Inc.
NOTES:1. All dimensions in mm. 2. Tolerancing per ASME Y14.5M-1994.
(c) Zarlink Semiconductor 2002. All rights reserved.
Package code Previous package codes
Drawing type
ISSUE ACN DATE
1
JS004293R1A
MJD
Package drawing - module layout Title
12-JUN-03
APPRD. TD/BE
JS004293
NOTES:1. All dimensions in mm. 2. Tolerancing per ASME Y14.5M-1994.
(c) Zarlink Semiconductor 2002. All rights reserved.
Package code Previous package codes
Drawing type
ISSUE ACN DATE
1
JS004293R1A
MJD
Package Drawing,
12-JUN-03
Host circuit board footprint layout
Title
APPRD. TD/BE
JS004293
For more information about all Zarlink products visit our Web Site at
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.
Purchase of Zarlink's I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE


▲Up To Search▲   

 
Price & Availability of ZL60101

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X